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Abstract.
Background: Many neurocognitive and neuropsychological tests are used to classify early mild cognitive impairment (EMCI),
late mild cognitive impairment (LMCI), and Alzheimer’s disease (AD) from cognitive normal (CN). This can make it
challenging for clinicians to make efficient and objective clinical diagnoses. It is possible to reduce the number of variables
needed to make a reasonably accurate classification using machine learning.
Objective: The goal of this study was to develop a deep learning algorithm to identify a few significant neurocognitive tests
that can accurately classify these four groups. We also derived a simplified risk-stratification score model for diagnosis.
Methods: Over 100 variables that included neuropsychological/neurocognitive tests, demographics, genetic factors, and blood
biomarkers were collected from 383 EMCI, 644 LMCI, 394 AD patients, and 516 cognitive normal from the Alzheimer’s
Disease Neuroimaging Initiative database. A neural network algorithm was trained on data split 90% for training and 10%
testing using 10-fold cross-validation. Prediction performance used area under the curve (AUC) of the receiver operating
characteristic analysis. We also evaluated five different feature selection methods.
Results: The five feature selection methods consistently yielded the top classifiers to be the Clinical Dementia Rating Scale -
Sum of Boxes, Delayed total recall, Modified Preclinical Alzheimer Cognitive Composite with Trails test, Modified Preclinical
Alzheimer Cognitive Composite with Digit test, and Mini-Mental State Examination. The best classification model yielded
an AUC of 0.984, and the simplified risk-stratification score yielded an AUC of 0.963 on the test dataset.
Conclusion: The deep-learning algorithm and simplified risk score accurately classifies EMCI, LMCI, AD and CN patients
using a few common neurocognitive tests.
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INTRODUCTION

Dementia is a neurodegenerative disease char-
acterized by progressive memory loss as a result
of neuronal cell death. More than 47 million peo-
ple worldwide live with dementia and by 2050 that
number is expected to increase to 131 million [1].
The most common type of dementia is Alzheimer’s
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disease (AD), and mild cognitive impairment (MCI)
is often seen as risk state of progression to AD. The
latter can be subdivided into early mild cognitive
impairment (EMCI) and late mild cognitive impair-
ment (LMCI), as defined in the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database [2]. While
there is no cure for dementia, early diagnosis may
enable lifestyle changes (such as diet and exercise),
neurocognitive enrichment, and therapeutic treat-
ment that may temporarily improve symptoms or
slow the rate of decline of symptoms, thereby improv-
ing the quality of life [3].
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The core clinical criteria for the diagnosis of MCI
and AD are neuropsychological tests [4, 5]. Fluid and
imaging biomarker tests, such as cerebrospinal fluid
markers and p-tau, may in some cases supplement
standard clinical tests in specialized clinical settings
[6]. A large array of neurocognitive tests are currently
used to detect cognitive impairment and classify
among normal controls (CN), EMCI, LMCI, and AD
[7, 8]. Many studies have identified a few top classi-
fiers using logistic regression and machine learning
methods [9–18]. Some studies have also used MRI
and genetic data in conjunction with neurocognitive
measures for classification [19, 20]. However, most
of these studies to date performed binary classifica-
tion (i.e., between CN and AD or CN and MCI) [10,
21]. Classifying CN, EMCI, LMCI, and AD remains
challenging. Deep learning is increasingly being used
in medicine, including classification of diseases to
aid diagnosis [22–24]. Deep learning, or machine
learning in general, uses algorithms to learn the rela-
tionship amongst different data elements to inform
outcomes. In contrast to traditional analysis methods
(such as logistic regression), the specific relationships
amongst different input variables with outcome vari-
ables do not need to be explicitly specified a priori.
Neural networks, for example, are made up of a col-
lection of connected nodes that model the neurons
present in a human brain [25]. Each connection, like
the synapses in a brain, transmits and receives sig-
nals to other nodes. Each node and the connections it
forms are initialized with weights which are adjusted
throughout training and create mathematical rela-
tionships between the input data and the outcomes.
Deep learning is well-suited to analyze complex and
large datasets where input and output variables can-
not be readily parameterized. The goal of this study
was to compare different feature-selection algorithms
and develop a deep-learning algorithm to identify the
top neurocognitive test scores that accurately classify
normal control, early MCI, late MCI and Alzheimer’s
disease. From these findings, we further constructed a
novel simplified risk score model to classify normal,
EMCI, LMCI and AD for clinical use.

METHODS

Study population

Data used in this study was obtained from
the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (http://adni.loni.usc.edu). Patients
were taken from the ADNI1, ADNIGO, ADNI2, and

Fig. 1. Flowchart of patient selection.

ADNI3 patient sets. Figure 1 shows the flowchart
for patient selection. The inclusion criteria were a
confirmed diagnosis from screening to the baseline
visit and the exclusion criteria were greater than
20% of patient data missing. The total sample size
in the study was 1,937 patients, with 1,743 being
randomly assigned to the training dataset and 194
being assigned to the testing dataset before any
feature selection or feature engineering was per-
formed. The specific dataset used was from the ADNI
database, which is a multi-institutional data source,
with built-in datasets. Future studies will use inde-
pendent datasets outside of the ADNI database. Of
the 1,937 participants that met the inclusion criteria,
516 patients were diagnosed as CN, 383 were diag-
nosed as EMCI, 644 were diagnosed as LMCI, and
394 were diagnosed as AD.

Data preprocessing

We evaluated about 100 input variables (i.e., test
scores, demographic information, and biomarkers).
Correlation matrix analysis showed that 47 variables
had a correlation coefficient above 0.5 and were
determined to be correlated, which merited exclu-
sion from further analysis. In addition, 29 variables
were missing in > 20% of patients and they were
also excluded from analysis. For the rest of the vari-
ables, missing data (most of which had < 10% data
missing) was imputed with Classification and Regres-
sion Trees (CART) using Multivariate Imputation by
Chained Equations (MICE) in R, a statistical analysis
software (version 4.0.0) [26]. Although regional vol-
umes were available through the Free Surfer pipeline,
> 30% were missing and regional volumes were thus
not included in the analysis. Intracranial volume

http://adni.loni.usc.edu
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was included with imputation because < 20% was
missing.

The following neurocognitive tests, demograph-
ics, comorbidities and other variables were used in
our analysis. The neuropsychological scores included
ADAS11 (Unweighted sum of 11 items from The
Alzheimer’s Disease Assessment Scale-Cognitive
Subscale (ADAS-Cog)), ADAS13 (Unweighted sum
of 13 items from ADAS-Cog), ADASQ4 (Score
from Task 4 (Word Recognition) of the Alzheimer’s
Disease Assessment Scale (ADAS)), CDRSB (Clin-
ical Dementia Rating Scale - Sum of Boxes), FAQ
(Functional Activities Questionnaire), LDELTOTAL
(Delayed total recall), MMSE (Mini-Mental State
Examination), RAVLT forgetting (Rey’s Auditory
Verbal Learning Test – Forgetting score), RAVLT
immediate (Rey’s Auditory Verbal Learning Test –
Immediate Recall score), RAVLT learning (Rey’s
Auditory Verbal Learning Test – Learning Score),
RAVLT percentage forgetting (Rey’s Auditory Ver-
bal Learning Test – Percent Forgetting), TRABSCOR
(Trail Making Test Part B Time), mPACCdigit (Modi-
fied Preclinical Alzheimer Cognitive Composite with
Digit test), and mPACCtrailsB (Modified Preclinical
Alzheimer Cognitive Composite with Trails test). The
extracted imaging parameters that were used included
intracranial volume (ICV), volume of ventricles, and
whole brain volume. APOE4 status was also included.
The demographics included age, sex, race, ethnicity,
education level (PTEDUCAT). The outcomes were 4
diagnosis classes: AD, LMCI, EMCI, and CN based
on comprehensive clinical diagnosis as provided in
the dataset.

Neural network model

Ranking of feature importance was first conducted
among cognitive tests, demographic information,
genetic tests, and extracted biomarkers. Five different
feature selection methods were utilized to identify the
most predictive variables: Information Gain, Boruta
Random Forest, Recursive Feature Elimination with
the Random Forest Classifier, Logistic Regression
with LASSO/L1 regularization, and Permutation
Importance in Keras. The scikit-learn library was
used for Recursive Feature Elimination and Logis-
tic Regression analyses. The Boruta package in R
was used for Boruta Random Forest and Weka
for Information Gain [27]. To conduct Permutation
Importance analysis, a separate neural network was
trained with all features available rather than just the
top few variables. This network consisted of 5 layers,

a BatchNormalization layer followed by 2 fully con-
nected (FC) dense layers followed by a dropout layer
and finally another fully connected dense layer. The
first FC layer consisted of 24 neurons with the ReLU
activation function and the second FC layer consisted
of 16 neurons with the ReLU activation function. The
dropout layer had a dropout rate of 0.20. The last
layer consisted of 4 neurons with the Softmax activa-
tion function for multiclass classification. The model
was compiled with categorical cross entropy loss with
the ADAM optimizer and a learning rate of 0.001
[28]. The top predictors were those that demonstrated
statistical significance.

For the deep learning model, a Multi-layer Per-
ceptron (MLP) neural network was constructed with
two fully connected dense layers for classification
followed by a dropout layer and finally a fully con-
nected dense layer. The first two FC layers contained
8 neurons along with the ReLU activation function.
The next layer was a dropout layer with dropout rate
of 0.15. The last layer contained 4 neurons and used
the Softmax activation function for multiclass clas-
sification. The model was compiled with categorical
cross entropy loss with the ADAM optimizer and a
learning rate of 0.003. Additionally, while testing the
classification accuracy of the variables selected by
Permutation Importance analysis, a BatchNormaliza-
tion layer was added as the first layer of the network.
The top predictors extracted from the global feature
selection analysis were used as input for the neural
network and the output was the diagnosis class. The
dataset was split into 90% training data and 10% test-
ing data using 10-fold cross validation while training
the neural network. Diagnosis results were catego-
rized by multiclass classification.

Risk score model development

A simplified risk score model was constructed
using the top 5 global variables (ca. cognitive test
scores) identified by the different feature selection
methods as followed: 1) For each variable, scores
were plotted for the 4 classes of diagnosis and cutoff
points were chosen to maximize separation amongst
the 4 classes. 2) The cutoff points were then used
to construct a point value system for each cogni-
tive test’s score range. This was done by fitting the
top cognitive tests in the training dataset against the
diagnosis outcome using a Generalized Linear Model
(GLM). 3) The GLM then assigned risk score points
for each of the cognitive tests score ranges. A higher
number of points for a given score range means that
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the patient is more likely to have AD. 4) A composite
risk score from the sum of the top 5 variables’ risk
scores was constructed for each patient. 5) The risk
score model was then tested on an independent test-
ing dataset and evaluated using ROC analysis. Risk
scores of the testing dataset were plotted for the 4
classes with interpolation smoothing.

We chose only the top five variables because: i)
they are manageable for creating the risk score, ii) fea-
ture importance dropped significantly after the first
five features for multiple machine-learning methods,
which provided further validation for the selection of
features and avoid potential bias, and iii) limiting to a
few features (instead of all features) prevents overfit-
ting in training the neural network and the risk score
models.

Performance evaluation and statistical analysis

Statistical analyses were performed using SPSS
v26.Frequencies and percentages for categorical vari-
ables between the stages of AD were compared in
a pair-wise fashion using χ2 tests. Continuous vari-
ables, which were denoted as median (IQR), were
first tested for normality with the Lilliefors corrected
Kolmogorov-Smirnov test. If they were shown to not
have a normal distribution, further comparison was
done in a pair-wise fashion between groups using the
nonparametric Kruskal-Wallis test. p-values < 0.05
were considered statistically significant.

ROC analysis was used to evaluate the perfor-
mance of the NN and the risk score model, in which
training data was first split into 90% for training and
10% for testing using 10-fold cross validation and
then tested on an independent testing set. The AUC
calculation was binary, in which one class was con-
trasted with the rest of the classes (one versus rest)
and this was repeated for each of the 4 classes. The
sensitivity and specificity reported were taken as an
average of the binary sensitivity and specificity of
each class. The 95% Confidence Interval (CI) for the
AUC was obtained through bootstrapping the neural
network’s predictions 1000 times.

RESULTS

Table 1 shows the demographic data for CN
(n = 516), EMCI (n = 383), LMCI (n = 644), and AD
(n = 394) groups. Age was not significantly different
between groups except between CN and LMCI and
between the LMCI and AD groups. Race and ethnic-
ity did not differ significantly between groups. The

median education level did not differ significantly
between any pair except between AD versus the other
classes.

With a few exceptions, all neurocognitive test
scores and mPACC tests showed pairwise differences
between groups. The MRI-extracted parameters were
significant between CN and AD and between CN and
LMCI, but not significant between the other pair-
wise comparison. APOE4 was significant different
in all pairwise comparisons. Sleep apnea and depres-
sion were the only significant comorbidities between
groups.

Figure 2 shows the results of the rankings by impor-
tance from the 5 feature selection methods performed
on the training dataset and Table 2 lists the top 9 fea-
tures. CDRSB was the most frequently identified top
feature amongst the top 5 feature selection methods
(5 out of 5), followed by LDELTOTAL (4 out of 5),
mPACCdigit (4 out of 5), mPACCtrailsB (3 out of 5),
MMSE (2 out of 5).

Neural network model for classification

Classification was performed using the top 5 fea-
tures. The performances on the testing data for the
5 methods are summarized in Table 3. AUCs for
the Information Gain, Boruta Random Forest, Recur-
sive Feature Elimination with the Random Forest
Classifier, Logistic Regression with LASSO/L1 reg-
ularization, and Permutation Importance were 0.978,
0.984, 0.983, 0.906, and 0.982, respectively, on the
testing dataset. The classifier selected by Boruta
Random Forest performed the best in terms of
AUC, but the classifier selected by Recursive Feature
Elimination performed better in terms of accuracy,
sensitivity, and specificity. By comparison, classifi-
cation using CDRSB, LDELTOTAL, mPACCdigit,
mPACCtrailsB, and MMSE individually yielded an
AUC of 0.8899, 0.8957, 0.8619, 0.8624, and 0.7808
respectively, on the testing dataset.

Risk score model

We then developed a simplified risk score model
using the same top 5 variables from our deep-learning
analysis. Figure 3 shows an example of the CDRSB
cognitive test scores for 4 different classes. The cut-
off points that maximized separation between the
4 classes were 0.1, 1.3, and 3.5, between CN and
EMCI, between EMCI and LMCI, and between
LMCI and AD group, respectively. The point values
for individual test score ranges are summarized in
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Table 1
Demographic information, neurocognitive tests, MRI-extracted biomarkers, and genetic factors among CN, EMCI, LMCI, and AD. Contin-
uous variables are expressed as median (IQR) and the pairwise Kruskal Wallis test is employed. The χ2 test is used to identify significance
between classes of categorical variables. p-values displayed are with Bonferroni’s correction. Pairwise comparisons are represented by
symbols, where ∗ indicates a statistical difference between the CN and EMCI groups, ∗∗ indicates a statistical difference between the CN
and LMCI groups, ∗∗∗ indicates a statistical difference between the CN and AD groups, $ indicates a statistical difference between the EMCI
and LMCI groups, $$ indicates a statistical difference between the EMCI and AD groups, and # indicates a statistical difference between the

LMCI and AD groups

% of patients

CN (n = 516) EMCI (n = 383) LMCI (n = 644) AD (n = 394) p

Demographics
Median age (IQR) 73 (70,78) 71 (66,77)∗ 74 (69,79)$ 75 (71,80)∗∗∗,$$

Sex < 0.001
Male 244 (47.3%) 214 (55.9%) 392 (60.9%) 231 (58.6%)
Female 272 (52.7%) 169 (44.1%) 252 (39.1%) 163 (41.4%)

Race < 0.001
American Indian or Alaskan

Native
2 (0.4%) 1 (0.3%) 1 (0.2%) 4 (1%)

Asian 9 (1.7%) 5 (1.3%) 12 (1.9%) 36 (9.1%)
Pacific Islander 0 1 (0.3%) 1 (0.2%) 0
African American 32 (6.2%) 9 (2.3%) 30 (4.7%) 24 (6.1%)
White 471 (91.3%) 357 (93.2%) 596 (92.5%) 312 (79.2%)
Multiple Races 2 (0.4%) 6 (1.6%) 3 (0.5%) 15 (3.8%)
Unknown 0 4 (1%) 1 (0.2%) 3 (0.8%)

Ethnicity 0.002
Hispanic/Latino 22 (4.3%) 21 (5.5%) 18 (2.8%) 30 (7.6%)
Not Hispanic/Latino 492 (95.3%) 360 (94%) 623 (96.7%) 357 (90.6%)
Unknown 2 (0.4%) 2 (0.5%) 3 (0.5%) 7 (1.8%)

Median education level (IQR) 16 (14,18) 16 (14,18) 16 (14,18) 16 (13,18)∗∗∗,$$,#

Median neurocognitive measures
(IQR)
ADAS11 6.3 (4,8.3) 8.7 (6,11)∗ 11.3 (8.7, 14.7)∗∗,$ 19 (15, 23.3)∗∗∗,$$,#

ADAS13 9.7 (6.7, 12.7) 13 (9, 17)∗ 18.7 (14.7, 23.3)∗∗,$ 29.7 (24.4, 35)∗∗∗,$$,#

ADASQ4 2 (1.8, 4) 4 (3,5)∗ 6 (4,8)∗∗,$ 9 (8,10)∗∗∗,$$,#

CDRSB 0 (0,0) 1 (0.5, 1.5)∗ 1.5 (1,2)∗∗,$ 4.5 (3.5, 5.4)∗∗∗,$$,#

FAQ 0 (0,0) 1 (0,3)∗ 2 (0,6)∗∗,$ 13 (8,18)∗∗∗,$$,#

LDELTOTAL 13 (11,16) 9 (8,10)∗ 4 (2,6)∗∗,$ 0 (0,2)∗∗∗,$$,#

MMSE 29 (29,30) 29 (28,29)∗ 27 (26,29)∗∗,$ 23 (21,25)∗∗∗,$$,#

RAVLT forgetting 3 (2,5) 4 (2,6)∗ 5 (3,6)∗∗,$ 5 (3,6)∗∗∗
RAVLT immediate 45 (38,52) 38 (32,46)∗ 30 (25,37)∗∗,$ 23 (18,27)∗∗∗,$$,#

RAVLT learning 6 (4,8) 5 (3,7)∗ 3 (2,5)∗∗,$ 2 (1,3)∗∗∗,$$,#

RAVLT % forgetting 30.4 (14.3, 50) 44.4 (24, 69.2)∗ 71.4 (42.9, 100)∗∗,$ 100 (85.7, 100)∗∗∗,$$,#

Trail Making Test Part B Time
(TRABSCOR)

73 (55.8, 93) 86 (65, 118)∗ 103 (75, 156)∗∗,$ 200.5 (121, 300)∗∗∗,$$,#

mPACCdigit 0.2 (–1.5, 1.9) –3.1 (–5.8, –1.6)∗ –7.8 (–10.2, –4.9)∗∗,$ –15.4 (–17.9, –12.7)∗∗∗,$$,#

mPACCtrailsB 0.3 (–1.7, 1.7) –2.7 (–5.2, –1)∗ –7.4 (–10, –4.6)∗∗,$ –14.5 (–16.9, –12.1)∗∗∗,$$,#

MRI volumes
ICV x106/mm3 1.5 (1.4, 1.6) 1.5 (1.4, 1.6) 1.5 (1.4, 1.7)∗∗,$ 1.5 (1.3, 1.6)#

Ventricles x104/mm3 3 (2, 4.2) 3.2 (2, 4.9) 3.8 (2.7, 5.7)∗∗,$ 4.4 (3.2, 6.2) ∗∗∗,$$,#

Whole brain x105/mm3 10.3 (9.5, 10.9) 10.6 (9.8, 11.3)∗ 10 (9.3, 10.8)∗∗,$ 9.6 (8.9, 10.4) ∗∗∗,$$,#

Genetic factorsa

0 APOE4 alleles 373 (72.3%) 217 (56.7%) 300 (46.6%) 130 (33%)
1 APOE4 allele 127 (24.6%) 135 (35.2%) 263 (40.8%) 187 (47.5%)
2 APOE4 alleles 16 (3.1%) 31 (8.1%) 81 (12.6%) 77 (19.5%)

Comorbiditiesb

Diabetes 34 (8.2%) 35 (11.4%) 47 (8.4%) 29 (8.7%) 0.108
COPD 17 (4.1%) 3 (1%) 11 (2%) 7 (2.1%) 0.012
Hypertension 179 (43.1%) 121 (39.5%) 221 (39.5%) 135 (40.4%) 0.174
Depression 76 (18.3%) 101 (33%) 168 (30.2%) 97 (29%) < 0.001
Sleep apnea 17 (4.1%) 48 (15.7%) 57 (10.2%) 22 (6.6%) < 0.001
Glaucoma 38 (9.2%) 20 (6.5%) 29 (5.2%) 23 (5.8%) 0.03

aPercentages were based on the total number of individuals in each diagnosis class that had a specific number of APOE4 alleles. bComorbidity
data was not available for 101 CN patients, 77 EMCI patients, 85 LMCI patients, and 60 AD patients.



1084 S. Nagaraj and T.Q. Duong / Deep Learning and Risk Score Classification of Mild Cognitive Impairment

Fig. 2. Feature ranking for (A) Information Gain, (B) Recursive Feature Elimination with the Random Forest classifier, (C) Boruta Random
Forest, (D) Permutation Importance, and (E) Logistic Regression with LASSO/L1 regularization.

Table 2
Top 9 clinical variables ranked by 5 feature selection methods

Ranking Information Boruta Random Recursive Logistic Regression Permutation
Gain Forest Feature with LASSO Importance

Elimination regularization

1 CDRSB CDRSB CDRSB CDRSB LDELTOTAL
2 LDELTOTAL LDELTOTAL LDELTOTAL APOE4 CDRSB
3 mPACCdigit mPACCtrailsB mPACCdigit FAQ MMSE
4 mPACCtrailsB mPACCdigit mPACCtrailsB PTEDUCAT mPACCdigit
5 ADAS13 MMSE PTEDUCAT ADAS13 WholeBrain
6 FAQ FAQ MMSE RAVLT immediate ICV
7 MMSE PTEDUCAT ADAS13 RAVLT forgetting PTEDUCAT
8 ADAS11 ADAS13 FAQ Ventricles RAVLT perc forgetting
9 ADASQ4 ADAS11 AGE LDELTOTAL ICV

ADAS11, Unweighted sum of 11 items from The Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog); ADAS13,
Unweighted sum of 13 items from ADAS-Cog; ADASQ4, Score from Task 4 (Word Recognition) of the Alzheimer’s Disease Assessment
Scale (ADAS); CDRSB, Clinical Dementia Rating - Sum of Boxes Score; FAQ, Functional Activities Questionnaire; ICV, Intracranial
Volume; LDELTOTAL, Delayed Total Recall; MMSE, Mini-Mental State Examination; PTEDUCAT, Education Level; RAVLT forgetting,
Rey’s Auditory Verbal Learning Test– Forgetting score; RAVLT immediate, Rey’s Auditory Verbal Learning Test– Immediate Recall score;
RAVLT percentage forgetting, Rey’s Auditory Verbal Learning Test– Percent Forgetting; mPACCdigit, Modified Preclinical Alzheimer
Cognitive Composite with Digit test; mPACCtrailsB, Modified Preclinical Alzheimer Cognitive Composite with Trails test; Ventricles,
Volume of Ventricles; WholeBrain, Volume of Whole Brain

Table 4. The composite score from the top 5 cog-
nitive tests (CDRSB, LDELTOTAL, mPACCdigit,
mPACCtrailsB, and MMSE) were constructed using a
GLM. The classification results on the testing dataset

are shown in Fig. 4. The risk score system classified
the four groups accurately. The performance of the
risk score model yielded an AUC of 0.963 [95% CI:
0.945-0.975], sensitivity of 88.06% and specificity
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Table 3
Performance of the variables selected from the 5 feature selection methods in our NN. Bracket values indicate 95% confident intervals

Boruta Random Recursive Feature Permutation Information Logistic
Forest Elimination Importance Gain Regression

AUC 0.981 0.986 0.982 0.978 0.910
[0.971–0.99] [0.978,0.994] [0.972,0.99] [0.966,0.988] [0.887, 0.932]

Accuracy (%) 91.24 90.72 90.72 90.21 73.71
Sensitivity (%) 90.88 90.47 90.30 89.64 73.09
Specificity (%) 96.94 96.78 96.76 96.53 90.75

Fig. 3. Scatterplot of CDRSB scores versus patient diagnosis in the training dataset. The black dashed lines represent the cutoff points that
maximize separation between diagnosis classes.

of 96.16%, and accuracy of 89.18% for the testing
dataset.

DISCUSSION

This study developed a deep-learning algorithm
to identify the top neurocognitive test scores that

accurately classify normal control, early MCI, late
MCI, and Alzheimer’s disease. Multiple feature
selection methods identified essentially the same
set of top variables, providing further corroboration.
CDRSB was identified to be a top feature, followed
by LDELTOTAL, mPACCdigit, mPACCtrailsB, and
MMSE for classification of disease subtypes. Perfor-
mance indices of the deep-learning model and the
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Table 4
Points given by the risk score model for each cognitive test and per diagnosis class on the training dataset

Class CDRSB LDELTOTAL MMSE mPACCdigit mPACCtrailsB

Score Points Score Points Score Points Score Points Score Points

CN 0–0.1 –4 13.5–23 –1 28.6–30 0 –1.5 to 6.25 0 –2.5 to 7.4 0
EMCI 0.1–1.3 0 8.5–13.5 0 27–28.6 0 –7 to –1.5 0 –6.3 to –2.5 0
LMCI 1.3–3.5 0 0.2–8.5 + 1 23–27 0 –15 to –7 0 –13 to –6.3 0
AD 3.5–10 + 2 0–0.2 + 2 17–22.8 + 1 –23.4 to –15 + 1 –23.4 to –13 + 1

Fig. 4. Composite risk score stratification. The scores ranged
from 0 to 11, with 11 indicating the greatest risk for developing
Alzheimer’s and 0 indicating the lowest.

simplified score system were highly accurate in clas-
sifying the four groups. The best model yielded an
AUC of 0.984, and the simplified risk stratification
score yielded an AUC of 0.962 for classification on
the test dataset. We concluded that only a few neu-
rocognitive tests are needed to accurately classify
normal control, early MCI, late MCI and AD.

Clinical diagnosis of AD and MCI involves a
large collection of clinical variables. They include
two major neurocognitive tests: CDR and MMSE.
MMSE and CDR are useful to distinguish between
CN and AD but less so among EMCI, LMCI, and CN.
We found that CDR was among the top performers
to classify among CN, EMCI, LMCI, and AD, but
MMSE was not.

The ADNI dataset consists of a large array of neu-
rocognitive tests that are not currently being used in
clinical settings but could have future applications.
With the advances in computing, it becomes possible
to use machine learning to analyze the large array of
neurocognitive tests to accurately classify CN, EMCI,
LMCI, and AD.

Although CDR and MMSE were used in the clin-
ical diagnosis, there are other variables that were
highly ranked, thereby providing insights into spe-
cific domain of cognitive dysfunction. It is possible

that high performance was dominated by a few vari-
ables of the same cognitive test group. However,
we used correlation-matrix analysis to remove vari-
ables that are highly correlated. Specifically, CDR
and MMSE was found to be weakly correlated. This
is not surprising as CDR and MMSE measure differ-
ent dimensions of cognitive function. Our approach
selected a small set of top predictors among many
that are highly predictive of outcome.

The key findings are: 1) our NN model was able
to diagnose 4 classes, which is not commonly done,
2) our NN model performance is comparable to lit-
erature, 3) the combined top neurocognitive scores
performed better in distinguishing CN, EMCI, LMCI,
and AD than individual scores. Taken together, our
NN model and risk score can ultimately improve
classification or diagnosis accuracy because it uses
multiparametric data. ML can also incorporate lon-
gitudinal multiparametric data to predict disease
progression.

The top 5 classifiers were all neurocognitive test
scores. The CDRSB is rated along 6 domains of
functioning, with each domain being rated on a 5-
point scale, and the global CDRSB being a function
of the scores from these 6 domains [29]. A higher
CDRSB indicates more severe impairment. LDEL-
TOTAL measures episodic memory and performance
is measured primarily through the amount of a story
that is remembered [30]. A lower LDELTOTAL score
indicates more severe impairment. The mPACCdigit
test measures working memory by asking the patient
to repeat back a sequence of digits of increasing
length, until they are not able to. The mPACCtrails
B test determines performance of processing speed
with a smaller score indicating more severe impair-
ment. Lastly, the MMSE, one of the most clinically
used battery tests, is a 30-question questionnaire that
is used to screen for dementia and includes tasks that
involve registration, recall, and attention. Individu-
ally, these tests all perform well in separating AD
from CN individuals, but struggle to diagnose MCI
subtypes, Indeed, we found classification using all
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top 5 variables and the derived risk score system
outperformed classification using CDRSB, LDEL-
TOTAL, mPACCdigit, mPACCtrailsB, and MMSE
individually.

It is interesting to note that intracranial volume
(ICV), volume of ventricles, and whole brain volume
by MRI were not highly ranked as classifiers of the
4 classes. Volumetric differences could readily dis-
tinguish between CN and AD groups but might not
readily differentiate between CN and MCI or between
MCI subclasses [31]. Other studies investigating hip-
pocampal volume for classifying dementia subtypes
showed promise, but it is still challenging for hip-
pocampal volume to accurately classify between CN
and MCI patients [32]. We did not include hippocam-
pal volume because it was not readily available in the
dataset.

Many studies have previously examined neurocog-
nitive tests and identified a few top neurocognitive
classifiers using non-machine learning methods, but
they are not discussed here [14–16, 18] (see reviews
[15, 16]) By comparison, only few studies uti-
lized (mostly supervised learning) machine learning
methods and some of these studies combined neu-
rocognitive tests and MRI regional brain volumes
as input variables [9–13, 17] (Table 5). So et al.
used a two-stage approach to classification with
the first stage identifying the most important sub-
sections of the MMSE and the second stage used
subsections of the Consortium to Establish a Reg-
istry for Alzheimer’s Disease (CERAD) assessment
[13]. They achieved up to 97% classification accu-
racy in Stage 1 with an MLP and 75% classification
accuracy in Stage 2 with support vector machine.
Lins et al. investigated a Brazilian dataset and uti-
lized gender, age, study time (in years), AD8, MMSE,
CDR, and SVFT scores, and two genetic mark-
ers (CYP46A1 and APOE4) [12]. They tested the
predictive power using the Random Forest, support
vector machine, and Stochastic Gradient Boosting
classifiers along with an MLP neural network. They
achieved a maximum binary classification accuracy
between dementia and CN patients of 96% using the
CDR and CYP46 features. Stamate et al. identified
mPACCdigit, mPACCtrailsB, and LDELTOTAL as
the top classifiers [17]. They combined these scores
with PET and MRI data and achieved an AUC of 0.88
for the binary classification of NC versus demen-
tia. Chiu et al. developed NMD-12, a 12-question
questionnaire that was shortened from the origi-
nal 45 question questionnaire from the HAICDDS
project by the Information Gain algorithm [11]. They

showed that this test performed better than the com-
monly used MMSE and MoCA tests with an AUC
of 0.94 for discriminating between CN and MCI
patients and 0.97 for MCI and dementia patients. Zhu
et al. analyzed a Taiwan cohort and ranked the rel-
ative importance of neuropsychological tests using
Information Gain, Random Forest, and the Relief
algorithm [9]. They classified normal, MCI, very mild
dementia, and dementia. They selected a few top
ranked features, and their optimized algorithm had
an accuracy of 0.81 using Relief feature selection
followed by classification with MLP method. Gill
et al. investigated an MRI-based feature and Mod-
ified Barthel Index Score (activities of daily living)
for binary classification between CN and MCI [10].
They used supervised machine learning and found the
AUC to be 0.86.

In sum, our results are comparable or compared
favorably with previous studies although compar-
isons were not made on the same datasets. Our study
is novel in that we employed a deep learning method,
applied to a large and multi-center ADNI data-
set with commonly used measures. We also classi-
fied amongst four groups instead of commonly used
binary classification in most previous studies (i.e.,
between normal controls versus AD, or normal con-
trols versus MCI).

This study has several limitations. In this cohort
white and non-Hispanic/Latino ethnicities are over-
represented. Some of the comorbidities, such as sleep
apnea and depression, showed significant differences
between the groups. We also did not include imaging
variables. Although ADNI is a multi-center dataset,
further testing of additional cohorts are needed for
generalization. Additionally, further evaluation of
independent datasets, including prospective studies,
would improve generalizability of these findings.

An eventual goal of our and other similar appro-
aches is to ultimately create an automated machine
learning algorithm and a derived simplified risk score
system to help physicians to make more stream-
lined and accurate diagnoses. Machine learning
approaches can help physicians by offering an objec-
tive initial assessment and possibly a second opinion
of the diagnosis. Moreover, in some other fields of
medicine, machine learning can already accurately
estimate risk for coronary heart disease [33] and the
detection of lung nodules on chest X-rays [34]. In
addition to approximating physician skills, machine
learning can also detect novel relationships not read-
ily apparent to human perception, especially in large,
complex, and longitudinal datasets.



1088
S.N

agarajand
T.Q

.D
uong

/D
eep

L
earning

and
R

isk
Score

C
lassification

ofM
ild

C
ognitive

Im
pairm

ent

Table 5
Comparison of machine learning studies in classifying different forms of dementia. VMD, very mild dementia; SVFT, Semantic Verbal Fluency Test; AD8, Dementia Screening Interview

Study name Feature selection methods Important neuropsychological measures AUC Classes Imaging for
classification

This study Information Gain, Permutation
Importance, Recursive Feature
Elimination, Boruta Random Forest, and
Logistic Regression

CDRSB, LDELTOTAL, mPACCdigit,
mPACCtrailsB, MMSE

Boruta RF: 0.984 CN, EMCI,
LMCI, AD

No
Recursive Feature Elimination: 0.983
Permutation Importance: 0.982
Information Gain: 0.978
Logistic Regression: 0.906

So et al.
(2017)
[14]

Chi-squared test and Information Gain Stage 1: Orientation to place, Orientation
to time, Three-stage commands, Recall,
and Attention from MMSE

Not reported Stage 1: CN and
cognitive
decline

No

Stage 2: Orientation to time, Memory
Function (Trial 1), Orientation to place,
Word Fluency, and Visuospatial function
(Trial 2)

Stage 2: MCI
and Dementia

Lins et al.
(2018)
[15]

Linear Vector Quantization MMSE, SVFT∗∗, CDR, AD8, study time Not reported CN, MCI,
Dementia

No

Stamate,
et al.
(2018)
[10]

Statistical Permutation Tests mPACCdigit, mPACCtrailsB,
LDELTOTAL, ADAS13, FAQ

NC versus dementia: 0.88
NC versus MCI: Not reported

CN, MCI,
Dementia

Yes

Chiu et al.
(2019)
[16]

Information Gain ranking Top 12 tests from the HAICDDS project
(includes functional, memory, and
cognitive tests)

NC versus MCI: 0.94 CN, MCI,
VMD,
Dementia

No
MCI versus VMD: 0.88
MCI versus dementia: 0.97
VMD versus dementia: 0.96

Zhu et al.
(2020)
[18]

Random Forest, Information Gain, and
Relief

Not reported 0.95 CN, MCI,
VMD∗,
dementia

No

Gill et al.
(2020)
[17]

Information Gain ranking Mild Behavior Impairment NC versus MCI/AD: 0.86 NC, MCI/AD Yes
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CONCLUSION

This study developed a deep-learning algorithm
and a simplified risk score to identify the top neu-
rocognitive test scores to classify normal control,
early MCI, late MCI, and AD. We concluded that
only a few neurocognitive tests are needed to accu-
rately classify normal control, early MCI, late MCI,
and AD. Accurate and early diagnosis may lead to
better management of the diseases, including inter-
ventions that improve symptoms or slow the rate of
decline of symptoms.
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